Scale dependence of omniphobic mesh surfaces.
نویسندگان
چکیده
We provide a simple design chart framework to predict the apparent contact angle on a textured surface in terms of the equilibrium contact angle on a chemically identical smooth surface and details of the surface topography. For low surface tension liquids such as methanol (gamma(lv) = 22.7 mN/m) and octane (gamma(lv) = 21.6 mN/m), a solid-liquid-air composite interface on a textured surface is inherently metastable. Thus, on application of a sufficient pressure difference (e.g., an externally applied pressure or a sufficiently large Laplace pressure at small droplet size) the metastable composite interface transitions to a fully wetted interface. A dimensionless robustness factor is used to quantify the breakthrough pressure difference necessary to disrupt a metastable composite interface and to predict a priori the existence of a robust composite interface. The impact of the length scale (radius of the cylindrical features R varying from 18 to 114 microm) and the feature spacing ratio (D(*) = (R + D)/R varying from 2.2 to 5.1, where 2D is the spacing between the cylindrical features) on the robustness is illustrated by performing contact angle measurements on a set of dip-coated wire-mesh surfaces, which provide systematically quantifiable cylindrical texture. The design chart for a given feature size R shows how the two independent design parameters--surface chemistry as revealed in the equilibrium contact angle and texture spacing embodied in the dimensionless spacing ratio (D(*))--can be used to develop surfaces with desirably large values of the apparent contact angle and robustness of the metastable composite interface. Most revealing is the scaling of the robustness with the dimensionless parameter l(cap)/R (where l(cap = (gamma(lv)/rho g)(1/2) is the capillary length), which indicates clearly why, in the consideration of self-similar surfaces, smaller is better for producing omniphobic surfaces that resist wetting by liquids with low surface tension.
منابع مشابه
Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on...
متن کاملWell-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating
Durability is a long-standing challenge in designing liquid-repellent surfaces. A high-performance omniphobic surface must robustly repel liquids, while maintaining mechanical/chemical stability. However, liquid repellency and mechanical durability are generally mutually exclusive properties for many omniphobic surfaces-improving one performance inevitably results in decreased performance in an...
متن کاملSilicone Brushes: Omniphobic Surfaces with Low Sliding Angles.
Losing contact: Omniphobic surfaces can be readily produced by acid-catalyzed graft polycondensation of dimethyldimethoxysilane (PDMS). Droplets show a very small contact angle hysteresis as well as a low sliding angle of only a few degrees. The nm-thick PDMS layer is neither easily washed away nor depleted. This method offers a novel approach towards the preparation of super-liquid-repelling s...
متن کاملThe springtail cuticle as a blueprint for omniphobic surfaces.
Omniphobic surfaces found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies. One example is the water and even oil-repellent cuticle of springtails (Collembola). The wingless arthropods evolved a highly textured, hierarchically arranged surface pattern that affords mechanical robustness and wetting resistance...
متن کاملDropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2010